A light beam is travelling from region I to region IV (Refer figure). The refractive index in regions I,II,III and IV are n_0 , $\frac{n_0}{2}$, $\frac{n_0}{6}$ and $\frac{n_0}{8}$, respectively. The angle of incidence θ for which the beam just misses entering region IV is [2008]

a)
$$\sin^{-1}\left(\frac{3}{4}\right)$$

b)
$$\sin^{-1}\left(\frac{1}{8}\right)$$

c)
$$\sin^{-1}\left(\frac{1}{4}\right)$$

d)
$$\sin^{-1}\left(\frac{1}{3}\right)$$

Sol-

(b) As the beam just misses entering the region IV, the angle of refraction in the region IV must be 90°.

$$\frac{1}{2} \frac{n_0}{2} \frac{n_0}{6} \frac{n_0}{6} \frac{n_0}{8}$$

Application of Snell's law successively at different interfaces gives

$$n_0 \sin \theta = \frac{n_0}{2} \sin \theta_1 = \frac{n_0}{6} \sin \theta_2 = \frac{n_0}{8} \sin 90^0$$

$$\Rightarrow \sin\theta = \frac{1}{8} \text{ or } \theta = \sin^{-1}\frac{1}{8}$$